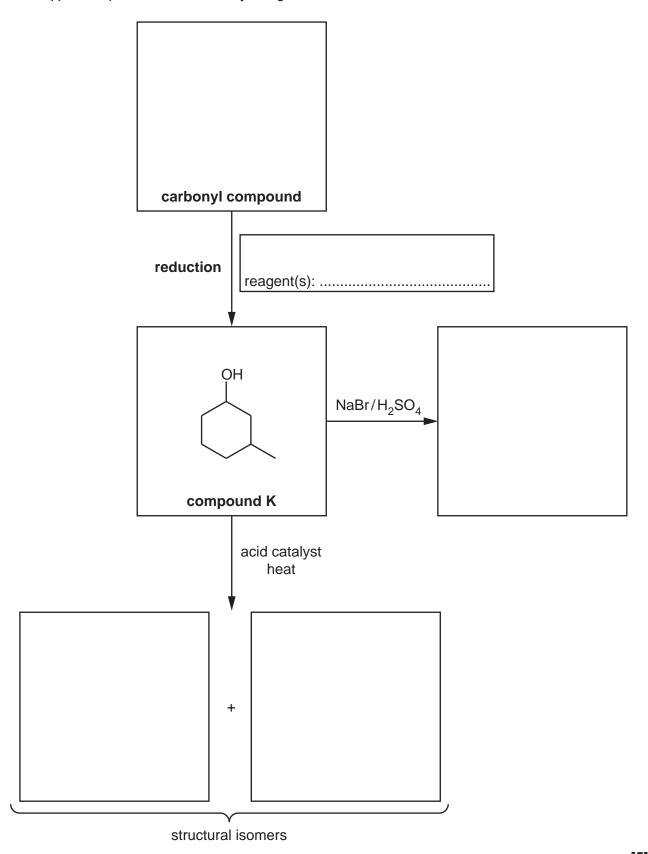
[1]

OCR (A) Chemistry A-Level - Alcohols

Your answer


1.	The boiling point of butan-1-ol is 118 °C. The boiling point of 2-methylpropan-2-ol is 82 °C.				
	Why is the boiling point of butan-1-ol higher than that of 2-methylpropan-2-ol?				
	A	butan-1-ol has stronger induced dipole-dipole interactions because it has more electrons			
B butan-1-ol has stronger induced dipole–dipole interactions because it has a straig structure					
	C butan-1-ol can form hydrogen bonds while 2-methylpropan-2-ol cannot				
	D butan-1-ol is more stable because it is a primary alcohol				

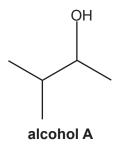
© OCR 2014 H432/02 **Turn over**

2.

Many alcohols, including ethanol, are soluble in water.						
(i)		-	m, why ethanol is soluble in wa	ter.		
		relevant dipoles and lon				
		·	•			
(ii)						
(ii)		ubility of hexan-1-ol and	hexane-1,6-diol in water is sho	wn below in Table 1 9		
(ii)		ubility of hexan-1-ol and		wn below in Table 1 9		
(ii)		ubility of hexan-1-ol and	hexane-1,6-diol in water is sho	wn below in Table 1 9		
(ii)		ubility of hexan-1-ol and Alcohol	hexane-1,6-diol in water is sho Solubility in water/gdm ⁻³	wn below in Table 1 9		
(ii)		Alcohol hexan-1-ol hexan-1-ol hexan-1-ol	hexane-1,6-diol in water is sho Solubility in water/g dm ⁻³ 5.9 500	wn below in Table 1 9		
(ii)	The solu	Alcohol hexan-1-ol hexan-1-ol hexane-1,6-diol	hexane-1,6-diol in water is sho Solubility in water/g dm ⁻³ 5.9 500 Table 19.1	own below in Table 1 9		
(ii)	The solu	Alcohol hexan-1-ol hexan-1-ol hexane-1,6-diol	hexane-1,6-diol in water is sho Solubility in water/g dm ⁻³ 5.9 500	own below in Table 1 9		
(ii)	The solu	Alcohol hexan-1-ol hexan-1-ol hexane-1,6-diol	hexane-1,6-diol in water is sho Solubility in water/g dm ⁻³ 5.9 500 Table 19.1	own below in Table 1 9		

- **(c)** Alcohols are important in organic synthesis and can be formed by the reduction of carbonyl compounds.
 - (i) Complete the flowchart by filling in each box.

	(ii) What is the name of compound K ?	
	[[1]
(d)	Butan-1-ol can be oxidised to form two different organic products, depending on the reaction conditions used.	on
	Describe both oxidation reactions of butan-1-ol.	
	For each reaction include	
	In your equations you may use [O] to represent the oxidising agent.	
		.


© OCR 2017 Turn over

3. Ethanol can be prepared by different reactions.

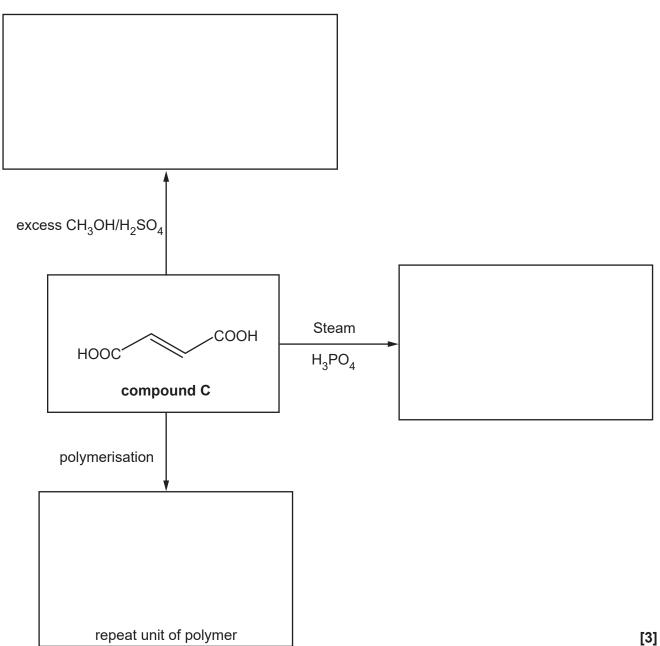
Which reaction has the lowest atom economy?

- $\textbf{A} \quad \text{ C}_6\text{H}_{12}\text{O}_6 \rightarrow 2\text{C}_2\text{H}_5\text{OH} + 2\text{CO}_2$
- $\mathbf{B} \quad \mathrm{C_2H_4} + \mathrm{H_2O} \rightarrow \mathrm{C_2H_5OH}$
- $\textbf{C} \quad \text{C}_2\text{H}_5\text{Br} + \text{H}_2\text{O} \rightarrow \text{C}_2\text{H}_5\text{OH} + \text{HBr}$
- $\mathbf{D} \quad \mathrm{CH_3COOC_2H_5} + \mathrm{H_2O} \rightarrow \mathrm{C_2H_5OH} + \mathrm{CH_3COOH}$

- 4. This question is about reactions of organic compounds containing carbon, hydrogen and oxygen.
 - (a) A chemist investigates two reactions of alcohol **A**, shown below.

(i)) What is the systematic name of alcohol A ?	
		[1]
(ii)) What is the structural formula of alcohol A ?	
		[1]
(iii)) The chemist heats alcohol A with an acid alkenes.	catalyst to form a mixture containing two
	Draw the structures of the two alkenes form	ed in this reaction.

(iv) The chemist heats alcohol A with sodium chloride and sulfuric acid.


Construct a balanced equation for this reaction. Show structures for the organic compounds in your equation. [2]

(b) Compound ${\bf B}$, shown below, is refluxed with excess acidified potassium dichromate(VI) to form a single organic product.

Complete the equation for this reaction.

(c) The flowchart below shows some reactions of compound C.

In the boxes, draw the organic products of these reactions.

© OCR 2018 Turn over

- 5. Which of these reagent(s) will **not** react with HOCH₂CH₂CH₂COOH?
 - A NaCN in ethanol
 - ${f B}$ ${f C}_2{f H}_5{f OH}$ in the presence of an acid catalyst
 - C (CH₃CO)₂O
 - **D** concentrated H₂SO₄

[1]

6. Which compound can be refluxed with acidified potassium dichromate(VI) to form an organic product with molecular formula $C_5H_8O_2$?

[1]

7.	VVh	nich alcohol reacts with an acid catalyst to form a mixture of stereoisomers?			
	Α	3-methylbutan-2-ol			
	В	pentan-1-ol			
	С	2-methylhexan-2-ol			
	D heptan-4-ol				
	You	ur answer	[1]		
8.	Wh	nich of the following reactions produce propan-1-ol?			
	1 The alkaline hydrolysis of 1-chloropropane.				
	2 The acid hydrolysis of propyl methanoate.				
	3 The acid hydrolysis of propanenitrile.				
	Α	A 1, 2 and 3			
	В	B Only 1 and 2			
	С	Only 2 and 3			
	D	Only 1			
	Υοι	ur answer	[1]		

9.	Alcohols can	be used to pre	pare organic comp	ounds with differen	ent functional groups
----	--------------	----------------	-------------------	---------------------	-----------------------

(a) H	$HO(CH_2)_4OH$	can be	oxidised to	form	HOOC($(CH_2)_{\ell}$	COOH.
-------	----------------	--------	-------------	------	-------	-----------------	-------

(i)	State the reagents and conditions and write an equation for this oxidation.
	In the equation, use [O] for the oxidising agent.
	Reagents and conditions:
	Equation:

[3]

(ii) $HOOC(CH_2)_2COOH$ is soluble in water.

Explain, using a labelled diagram, why $\mathsf{HOOC}(\mathsf{CH}_2)_2\mathsf{COOH}$ is soluble in water.

- **(b)** HOOC(CH₂)₂COOH and HO(CH₂)₄OH react together to form polymer **E**.
 - (i) Draw one repeat unit of polymer E.

The functional groups should be clearly displayed.

[2]

(ii) Governments are encouraging the development of biodegradable polymers to reduce dependency on persistent plastic waste derived from fossil fuels.

Polymer **E** is a biodegradable polymer.

Suggest why polymer **E** is able to biodegrade.

(iii) A large yield of polymer **E** can be obtained by reacting a diacyl dichloride with $HO(CH_2)_4OH$.

The diacyl dichloride is prepared from $HOOC(CH_2)_2COOH$.

Complete the equation for the formation of a diacyl dichloride from HOOC(CH₂)₂COOH.

[3]